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Abstract

As a result of NSF-funded course redesign efforts to
implement, promote and research active learning in
introductory Calculus, this paper discusses a derivi-
tive sketching activity for Calculus I. Pilot research
indicates that overly-qualititative approaches to the
activity often lead to certain incorrect student graphs.
After revealing a deeper look at the mathematics be-
hind the activity, the paper explores an approach to
moderating the lesson in a way that leads students
to a deeper understanding by activating familar pre-
requisite knowledge, without requiring mathematics
beyond their zones of proximal development.

1 Introduction

This brief paper focuses on one course redesign ap-
proach for first-year calculus resulting from collobora-
tions with the Mathematics FLOCK (Faculty Learn-
ing for Outcomes and Knowledge) group at Fresno
State. Key elements of this redesign philosophy
are based on two principles inspired from mathemat-
ics education literature as well as writings in cogni-
tive psychology and research on analogical transfer in
learning.

1. The Necessity Principle

"For students to learn what we intend to
teach them, they must have a need for it,
where ’need’refers to intellectual need, not
social or economic need."

2. The Repeated Reasoning Principle

"Students must practice reasoning in order
to internalize, organize, and retain ways of
understanding and ways of thinking."

Figure 1: Learning to ride a bicycle would be near
impossible from just handling the parts.

The above principles from (Harel, 2007) influence
the ’what’ and ’how’ topics are covered in this re-
form classroom. In terms of implementation, these
two principles have taken form in the following rec-
ommendations for course redesign.

• Review of prerequisite material should be
avoided.

• Important ideas and problem solving should
commence as soon as possible so that their prac-
tice can induce recognition of patterns to prob-
lem solving.

• Active learning is essential for students to au-
thentically internalize, apprehend and communi-
cate mathematics.

To understand the redesign rationale from another
viewpoint, suppose that an enduring an idea such as
the derivative concept is viewed as a bicycle. Clearly
there are many components, yet looking at them in
isolation and adding more and more components to
the picture does not provide a bicycle until the ’parts
list’has been completed (see Fig. 1).

A Wholecept is a cognitive structure,
arrangement, or pattern of mathematical
phenomena so integrated as to constitute a
functional unit with properties not derivable
by summation of its parts.



Figure 2: Foreground/background depiction of
Gestalt learning - the old/young woman.

The Wholecept definition was originally inspired
from Tall’s ’procept’notion which blurs the
distinction between processes and concepts; but as
reflection on teaching was refined, Fritz Perls’
gestalt therapy writings informed the need for a
dynamic element similar to the gestalt
foreground/background process of conflict resolution
(Grey & Tall 1994; Perls 1973). According to Perls,
if cognitive diffi culty is in the foreground, then one
can not proceed until the diffi culty is resolved and
made to retreat to the background so that
progression can be made to deeper conflict resolution
(see Fig. 2). In this respect, real conflict in student
learning is not due to lack of understanding of
prerequisite material, but rather to the need for a
coherent picture of the ’relevance’of any particular
mathematical topic they are being required to learn;
hence, the above recommendations.

To restate this in terms of (Harel, 2007), viola-
tion of the Necessity Principle constitutes a funda-
mental roadblock to learning. The Wholecept rep-
resents mathematical knowledge that is more ’found’
than constructed through a dynamic process of grad-
ual conflict resolution and discovery. In this sense,
the philosophical underpinnings of this emergent the-
ory of mathematical learning have Platonist under-
pinnings, rather than being purely a constructivist
view of learning. (Mazur, 2008) elegantly captures
this viewpoint in the following quote:

When I’m working I sometimes have
the sense — possibly the illusion — of gaz-
ing on the bare platonic beauty of structure
or of mathematical objects, and at other
times I’m a happy Kantian, marvelling at
the generative power of the intuitions for
setting what an Aristotelian might call the
formal conditions of an object. And some-
times I seem to straddle these camps (and
this represents no contradiction to me). I
feel that the intensity of this experience,

the vertiginous imaginings, the leaps of in-
tuition, the breathlessness that results from
“seeing”but where the sights are of entities
abiding in some realm of ideas, and the pas-
sion of it all, is what makes mathematics so
supremely important for me.

Figure 3: Unilinear concept formation - learning to
ride a bike by building it one piece at a time and then
trying to ride only when completed.

Figure 3 describes the conventional approach to ap-
prehending a wholecept, such as the derivative whole-
cept, by building up from the basics, linearly, until
the derivative can eventually be defined and exam-
ples can finally begin which employ and connect the
previously learned material to the main topic. A
central weakness of this approach is that students of-
ten have very little time practising problems, reason-
ing and communication related to the ’big picture,’
which can contribute to poor exam performance and
retention of the material. This is represented by
the faintness of the final large circle in figure 3. In
stark contrast, figure 4 depicts a very faint initial pic-
ture of the entire wholecept which, by repetition, be-
comes more and more clear to a point of eventual
mastery. Note that the final circle in Fig. 4 is as
dark as the smallest low-level circle in figure 3, im-
plying that the derivative wholecept has now become
a functional unit applicable to a much larger picture.

Figure 4: Wholecept resolution -taking a longer time
to repetitively learn to ride a functioning bike.

To illustrate how these ideas could be applied to
calculus I, one could begin with the derivative whole-
cept in its entiriety on the first day of class, and then
continually pull in the ’necessary’concepts which are
needed to make it work, so to speak, so that rich-
problems arising from the derivative wholecept can
begin and repeated as soon and as long as possible.



Through this repetitive ’mantra’ of rich-structure
problem solving, concepts such as the one-sided and
two-sided limit, continuity, graphs, slopes, functions
and tangent lines start to have renewed meaning and
allow for the student to resolve issues of content rel-
evancy, which may now ’retreat to the background,’
so that connections can be recognized and larger-
scale problem solving patterns practised and learned.
Next, an activity in derivative sketching is discussed
which is one of many weekly activities used in the in-
fusion of active learning in calculus at Fresno State, in
collaboration with the Boulder-Omaha Active learn-
ing alliance (BOALA, 2016).

2 Activity Description

Figure 5: The cylindrical cup.

(Initial Problem) Coffee is being poured at a con-
stant rate v into coffee cups of various shapes. Sketch
rough graphs of the rate of change of the depth h′(t)
and of the depth h(t) as a functions of time t (see
Fig.5).

The two cup shapes discussed in this paper are the
cylindrical and frustum shaped cups. In informal
terms, most all students over three semesters of im-
plementation produce qualitatively correct graphs for
the straight-sided cup (see Fig. 6).

Figure 6: Cylindrical cup student solutions.

2.1 Slant-sided cup

In contrast, for the inverted frustum cup most all
students produce incorrect graphs for (t, dhdt ) (see
Fig.7). In the following section, the mathematics
behind these related rate graphs is discussed; how-
ever, it should be emphasized that the students par-
ticipating in this activity are not expected to under-
stand it at the depth to be discussed. An impor-
tant aim of the mathematical treatment given in this

paper, though, is to caution against overly qualita-
tive approaches when a deeper understanding of the
mathematics behind an activity can greatly inform
pedagogy.

Figure 7: Typical student solutions of slant-sided cup.

3 A Deeper Look

Looking more closely at the cylindrical cup with base
radius r0, we can safely conclude that since the vol-
ume V (t) of coffee in the cup increases at a constant
rate, then so does its depth.
Hence, h′(t) ≡ h and h(t) = ht (the cup being

empty initially, i.e., h(0) = 0).

V (t) = πr20h(t).

Differentiating both sides relative to t

V ′(t) = πr20h
′(t)

and considering that V ′(t) = v, we have: h′(t) =
v

πr20
7−→ h(t) =

v

πr20
t (given h(0) = 0).

As seen in figure 6, the typically correct student
graphs align well with the mathematics, since
(t, h′(t)) produces a constant function horizontal
graph, and (t, h(t)) consists of a linear graph
through the origin with positive slope. Observe
that h′(t) is not the same as V ′(t), although this
fact may elude students’attenton when only a
qualitative approach is applied.

For the slant-sided (inverted frustum) cup ... let
r(t) be the radius of the surface of coffee. Then

r(t) = r0 +mh(t)

with some m > 0.

In this case, it appears "natural" to think of h′(t)
as a linear function based on the linear dependence of
the radius r(t) on the depth h(t) which leads to the



conclusion that h′(t) is a linear function and h(t) is
quadratic. But as we shall see, this described qual-
itative approach fails the test by mathematics since
by the conical frustum volume formula, the volume
of coffee in the cup at time t is given by:

V (t) =
1

3
π[r20 + r0r(t) + r

2(t)]h(t)

Instead of differentiating both sides of the above equa-
tion relative to t, which would make things more con-
voluted, we consider that V ′(t) ≡ v immediately im-
plies V (t) = vt (with V (0) = 0); hence, h(t) is to be
found from the cubic equation:

m2h3(t) + 3mr0h
2(t) + 3r20h(t)− 3vt/π = 0.

As recalled in texts such as (Boyer and
Merzbach,1991), the general formula for the
roots of such an equation in this case yields h(t)
explicitly as

h(t) = − 1

3m2

[
3mr0 +

3

√
−27m3r30 − 81m4vt/π

]
.

Hence,

h(t) = a(t+ b)1/3 + c

with some a, b > 0 and c < 0 such that h(0) = ab1/3+
c = 0 and

h
′
(t) =

a

3
(t+ b)−2/3. Eq.[1]

Letting a = b = 1 and c = −1 satisfies the initial con-
ditions and produces qualitatively accurate graphs for
h(t) and h′(t) (see Fig.8).

0 10 20
0.0

0.5

t

h'(t)

0 5 10
0

2

t

h(t)

Figure 8: Frustum cup graphs.

3.1 The Exponential-Sided Cup

As a calculus II extension of the previous analyses,
the disk method performed on an exponential-sided
cup highlights the mathematical depth lying behind
this activity when analyzing vessels which are widen-
ing (or narrowing) (see Fig. 9).
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Figure 9: Flat-bottom exponential-sided cup gener-
ated by revolving y = ex around the x−axis ( x→ 0
to h > 0).

Using the disk-method from 0 to h and employing
the previous technique letting V ′(t) ≡ v and V (t) =
vt,

V (t) = π

h∫
0

(ex)
2
dh =

πe2h

2
− π

2
= vt.

whereby solving for h gives

h(t) =
1

2
· ln(2vt

π
+ 1).

For a simpler picture, let v = π
2 which becomes

h(t) =
1

2
· ln(t+ 1)

and then differentiating both sides relative to t we
have

h′(t) =
1

2(t+ 1)

resulting in graphs qualitatively similar to the
slant-sided cup graphs (see Figs. 8 & 10).
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Figure 10: Exponential-sided cup graphs.

4 Facilitating Transfer: Known
to Unknown

A first place to start when debriefing groups of stu-
dents on this activity can begin with collaborative dis-
cussions about their interpretations of their graphs.
For example, looking back at the slant-sided student
solution graphs (see Fig.7), after some good question-
ing students can arrive at the conclusion that the in-
correct graphs (t, h′(t)) don’t make sense since they
imply that the rate of change of the height eventually
becomes 0. A fact contradicting the constant filling
of the cup, and moreover if continued, dh

dt becomes
negative implying the height function is decreasing.
On a positive note, students can also reflect on the

fact that their (t, h(t)) graphs usually do make sense,
since they start at 0 and increase, yet the rate of
increase slows down as seen by the tangent lines to
the graph becoming more horizontal and approaching
zero, consistent with the assumption of constant fill-
ing of an increasingly ’widening’cup of coffee. So the
question remains, how can students arrive at correct
(t, h′(t)) graphs given the mathematics they know?
Analogical problem construction (APC) refers to "let-
ting students construct their own analogous prob-
lems," which has the important feature "that it allows
the problem solver to use his or her own knowledge
and experiences to create the analogical problem ele-
ments" (Bernardo, 2001).
In a mathematics study on APC (Bernardo, 2001)

found that,

One can use a rather structured task,
and still allow students to explore and en-
gage the information in math problems

enough to lead them to deeper levels of un-
derstanding of the problems which increase
analogical transfer performance.

This paper concludes with some structured
examples for how APC can be induced in the
context of this activity.

4.1 Questions for Students Based on
What They Know

Promoting analogical problem construction in the
context of this calculus activity can begin by asking
students to collaboratively produce familiar functions
that resemble their (t, h(t)) graphs. After discussion
and concensus, they can be asked to find the deriv-
ative graphs of these familiar functions and compare
them to those made in the cup activity. As an exam-
ple, the following two functions are familiar to most
students and have graphs that match the initial con-
ditions and have the same qualitative shapes as their
correctly produced (t, h(t)) graphs:

• h(t) =
√
t

• h(t) = ln(t+ 1)

At this point in the course material, calculus stu-
dents can easily take these derivatives and sketch
their graphs (see Figs.11 & 12), and then compare
them to the ones they produced. Important topics
such as concavity can be discussed as well as sub-
tleties, such as the difference between figures 8 and
11, where in figure 11 the (t, h′(t)) graph appears to
be infinite at t = 0, illustrating the degenerate case
when the frustum is a cone (see sect. 3, Eq.[1], and
consider when b = 0).
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Figure 11: (t, 1
2
√
t
) graph.

As this activity is done at the end of the semester,
when anti-differentiation has been covered, the
previous line of questioning involving graphing the
derivative of familiar functions of (t, h(t)) can be
reversed to the case of finding familar functions to
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Figure 12: (t, 1
t+1 ) graph.

their (t, h′(t)) graphs, and exploring problematical
issues associated with graphs of their
anti-derivatives.

For example, the following two functions have the
same qualitative shapes as their typically incorrect
(t, h′(t)) graphs (see Fig.7):

• h′(t) = −2t+ 3

• h′(t) = −t2 + 2
Recalling the initial condition that h(0) = 0 then

for both antiderivatives C = 0; hence,∫
−2t+ 3 dt = −t2 + 3t+ C = −t2 + 3t

∫
−t2 + 2 dt = t3

3
+ 2t+ C = − t

3

3
+ 2t

These computations produce the following
non-sensical graphs, which may promote rich
discussions as they are problematical for a variety of
reasons, one being they imply the height increases
then decreases, again contradicting the assumption
of constant filling of the coffee cups (see Figs. 13 &
14).
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Figure 13: Anti-derivative graph for h′(t) = −2t+ 3.
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Fig. 14
Anti-derivative
graph for

h(t) = −t2 + 2.
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